Four-wave mixing ( FWM) is an intermodulation phenomenon in nonlinear optics, whereby interactions between two or three produce two or one new wavelengths. It is similar to the third-order intercept point in electrical systems. Four-wave mixing can be compared to the intermodulation distortion in standard electrical systems. It is a parametric nonlinear process, in that the energy of the incoming is conserved. FWM is a phase-sensitive process, in that the efficiency of the process is strongly affected by phase matching conditions.
Given inputs f1, f2, and f3, the nonlinear system will produce
From calculations with the three input signals, it is found that 12 interfering frequencies are produced, three of which lie on one of the original incoming frequencies. Note that these three frequencies which lie at the original incoming frequencies are typically attributed to self-phase modulation and cross-phase modulation, and are naturally phase-matched unlike FWM.
A condition for efficient generation of FWM is phase matching: the associated k-vectors of the four components must add to zero when they are plane waves. This becomes significant since sum- and difference-frequency generation are often enhanced when resonance in the mixing media is exploited. In many configurations the sum of the first two photons will be tuned close to a resonant state. However, close to resonances the index of refraction changes rapidly and makes addition four co-linear k-vectors fail to add exactly to zero—thus long mixing path lengths are not always possible as the four component lose phase lock. Consequently, beams are often focused both for intensity but also to shorten the mixing zone.
In gaseous media an often overlooked complication is that light beams are rarely plane waves but are often focused for extra intensity, this can add an addition pi-phase shift to each k-vector in the phase matching condition. It is often very hard to satisfy this in the sum-frequency configuration but it is more easily satisfied in the difference-frequency configuration (where the pi phase shifts cancel out). As a result, difference-frequency is usually more broadly tunable and easier to set up than sum-frequency generation, making it preferable as a light source even though it's less quantum efficient than sum-frequency generation.
The special case of sum-frequency generation where all the input photons have the same frequency (and wavelength) is Third-Harmonic Generation (THG).
couples three components, thus generating so-called degenerate four-wave mixing, showing identical properties to the case of three interacting waves.
|
|